0=2x^2-4x+0

Simple and best practice solution for 0=2x^2-4x+0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2x^2-4x+0 equation:



0=2x^2-4x+0
We move all terms to the left:
0-(2x^2-4x+0)=0
We add all the numbers together, and all the variables
-(2x^2-4x+0)=0
We get rid of parentheses
-2x^2+4x-0=0
We add all the numbers together, and all the variables
-2x^2+4x=0
a = -2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-2)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-2}=\frac{-8}{-4} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-2}=\frac{0}{-4} =0 $

See similar equations:

| -6z-14=2z+18 | | 0.2(x-3)=0.8x-0.3 | | 16x3-14x+4=0 | | y=48-51 | | x3-14x+4=0 | | −103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x−103−5x=72+2x | | (5x-9)=(3x+19) | | −103−5x=72+2x | | 4(2x-1)=10(x-5 | | (4x+10)=58 | | y=48-0.5*102 | | -4a-2a=6a-13 | | 1.2x-3.6=2.6x-10.6 | | y=48-0.5102 | | 5t^2+12t-80=0 | | -56+9x=14+4x | | 40+3m=12 | | 6x=6-2x | | 3^x=40 | | 4x+11x=x+12 | | x+4x+4=3(3x-1) | | 2(7)^x=110 | | 71 3∙x=1.6÷6 11 | | 0.91=1-z | | 8y-20=5y+4 | | 11x-4=2x+6 | | -6(x+2)-14=20+8 | | -3w-4=w | | -11=8x+10-7x | | 3x+28=19 | | 2x+3=-6+7x | | -3+2x-2=8x-5-6x |

Equations solver categories